Che cos’è Human-in-the-loop (HITL)?
 Uno dei termini che potresti incontrare quando hai a che fare con l’intelligenza artificiale (AI) e l’apprendimento automatico (ML) è human-in-the-loop (HITL). È proprio come sembra. HITL è una branca dell’IA che si basa sull’intelligenza umana e macchina nella creazione di modelli di apprendimento automatico.

Un approccio human-in-the-loop significa che le persone sono coinvolte nel ciclo di addestramento, messa a punto e test dell’algoritmo.

Gli esseri umani prima etichettano i dati, che aiutano il modello a ottenere dati di addestramento di alta qualità e quantità elevate. Un algoritmo di apprendimento automatico impara quindi a prendere decisioni in base ai dati prima che gli esseri umani inizino a mettere a punto il modello.

Il modello può quindi essere testato e convalidato dagli esseri umani valutandone i risultati. Questo processo è particolarmente utile nei casi in cui l’algoritmo non è sicuro di un giudizio o, d’altra parte, in cui l’algoritmo è troppo sicuro di una decisione errata.

Il processo HITL è un ciclo di feedback continuo, il che significa che ciascuna delle attività di addestramento, ottimizzazione e test viene reintrodotta nell’algoritmo. Questo processo consente all’algoritmo di diventare più efficace e accurato nel tempo, il che è particolarmente utile per creare grandi quantità di dati di addestramento altamente accurati per casi d’uso specifici. L’intuizione umana aiuta a mettere a punto e testare il modello in modo che l’organizzazione possa prendere la decisione più accurata e attuabile.

 
L’importanza dell’apprendimento automatico HITL
HITL è un ramo estremamente importante dell’IA poiché i modelli di apprendimento automatico convenzionali richiedono un gran numero di punti dati etichettati per ottenere previsioni accurate. Quando mancano i dati, i modelli di machine learning non sono così utili.

Prendi l’apprendimento delle lingue come esempio. Se hai una lingua parlata solo da poche migliaia di persone e desideri ottenere informazioni dettagliate su quella lingua attraverso l’apprendimento automatico, potrebbe essere difficile trovare esempi sufficienti da cui il modello possa imparare. Con un approccio HITL, puoi garantire l’accuratezza di questi set di dati.

Il settore sanitario è anche uno dei più importanti per i sistemi HITL. Uno studio del 2018 di Stanford ha scoperto che un modello HITL funziona meglio dell’IA o degli esseri umani da soli.

I sistemi HITL migliorano la precisione mantenendo allo stesso tempo standard a livello umano, che è importante per molti settori in tutto il mondo.

Quando utilizzare i sistemi HITL
Ci sono alcuni momenti specifici nel ciclo di vita dell’IA in cui dovrebbe essere utilizzato l’apprendimento automatico umano nel ciclo:

Formazione : il luogo più comune in cui gli scienziati dei dati utilizzano HITL è durante le fasi di formazione, in cui gli esseri umani forniscono dati etichettati per l’addestramento del modello.
Accordatura e test : L’altro tempo principale in cui viene utilizzato HITL è nelle fasi di messa a punto e test. Gli esseri umani mettono a punto i modelli per una maggiore precisione, il che è particolarmente cruciale quando il modello non è sicuro.
È importante notare che l’approccio HITL non è appropriato per tutti i progetti di machine learning. Viene utilizzato principalmente quando non ci sono molti dati disponibili.

Il deep learning Human-in-the-loop viene utilizzato quando gli esseri umani ei processi di apprendimento automatico interagiscono in determinati scenari, ad esempio: gli algoritmi non comprendono l’input; l’immissione dei dati è interpretata in modo errato; gli algoritmi non sanno come eseguire un compito specifico; il modello di apprendimento automatico deve essere più accurato; la componente umana deve essere più efficiente e precisa; il costo degli errori è troppo alto nello sviluppo di ML; e i dati desiderati non sono disponibili.

Tipi di etichettatura dei dati per HITL
L’approccio HITL può essere utilizzato per vari tipi di etichettatura dei dati a seconda del tipo di set di dati richiesti. Ad esempio, se la macchina deve imparare a riconoscere forme specifiche, vengono utilizzati dei riquadri di delimitazione. Ma se il modello deve classificare ogni parte di un’immagine, è preferibile la segmentazione. Quando si tratta di set di dati di riconoscimento facciale, vengono spesso utilizzati i segni del viso.

Un’altra importante applicazione è l’analisi del testo, che consente alla macchina di comprendere ciò che viene detto o scritto dagli esseri umani. Poiché le persone usano parole diverse per esprimere gli stessi significati, i sistemi di intelligenza artificiale devono conoscere le diverse variazioni. Andando ancora oltre, l’analisi del sentimento può riconoscere il tono di una parola o frase specifica. Questi esempi dimostrano perché è così importante utilizzare l’approccio human-in-the-loop.

Perché la tua azienda dovrebbe implementare HITL
Se la tua azienda sta cercando di installare un sistema HITL, uno dei modi più comuni per farlo è utilizzare un software di automazione. C’è un sacco di software di automazione che è già costruito attorno all’approccio HITL, il che significa che ha già preso in considerazione il processo.

Sistemi come questi consentono all’azienda di raggiungere immediatamente prestazioni di alto livello e di ottenere informazioni dettagliate. I sistemi di apprendimento automatico sono già stati implementati in quasi tutti i settori, il che significa che gli sviluppatori devono assicurarsi che i sistemi funzionino bene con i dati che cambiano.

Ci sono molti vantaggi nell’implementare un sistema HITL nella tua azienda:

Migliora il processo decisionale : un sistema HITL migliora il processo decisionale di un’azienda fornendo trasparenza e coerenza. Protegge anche dai pregiudizi includendo il feedback umano nel processo di formazione.
Più efficiente : i sistemi HITL sono generalmente considerati più efficienti dei tradizionali sistemi di apprendimento automatico. Richiedono meno tempo per la formazione e l’ottimizzazione, il che significa che producono informazioni più rapidamente.
Trasparenza : i sistemi Human-in-the-loop offrono una maggiore trasparenza nel modello di apprendimento automatico, come funziona e perché si è giunti a una determinata decisione. La spiegazione e la responsabilità sono fondamentali per i sistemi di intelligenza artificiale di oggi e l’approccio HITL è di grande aiuto.
Sfide dei sistemi HITL
I sistemi Human-in-the-Loop presentano anche alcune sfide specifiche che dovrebbero essere affrontate. Per uno, gli umani commettono errori, quindi qualsiasi sistema con gli umani rischia di essere sbagliato. Questo può avere un grande impatto sull’efficacia del sistema. Ad esempio, se un essere umano commette un errore durante l’etichettatura dei dati, lo stesso errore si farà strada attraverso l’intero sistema e potrebbe causare problemi futuri.

I sistemi HITL possono anche essere lenti poiché gli esseri umani sono coinvolti nel processo decisionale. Uno dei motivi principali alla base della crescita di IA e ML è che le macchine sono incredibilmente più veloci degli esseri umani, ma questa velocità spesso riscontrata nei sistemi ML tradizionali non si tradurrà sempre in sistemi HITL.

Un’altra sfida dei sistemi HITL è che possono essere costosi da costruire e mantenere. Oltre ai costi associati alla macchina, l’azienda deve prevedere anche il lavoro umano.

Di Alex McFarland da Unite.ai

Di ihal

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

Questo sito utilizza i cookie per fornire la migliore esperienza di navigazione possibile. Continuando a utilizzare questo sito senza modificare le impostazioni dei cookie o cliccando su "Accetta" permetti il loro utilizzo.

Chiudi